Effects of oxygen and light intensity on transcriptome expression in Rhodobacter sphaeroides 2.4.1. Redox active gene expression profile.

نویسندگان

  • Jung Hyeob Roh
  • William E Smith
  • Samuel Kaplan
چکیده

The roles of oxygen and light on the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 have been well studied over the past 50 years. More recently, the effects of oxygen and light on gene regulation have been shown to involve the interacting redox chains present in R. sphaeroides under diverse growth conditions, and many of the redox carriers comprising these chains have been well studied. However, the expression patterns of those genes encoding these redox carriers, under aerobic and anaerobic photosynthetic growth, have been less well studied. Here, we provide a transcriptional analysis of many of the genes comprising the photosynthesis lifestyle, including genes corresponding to many of the known regulatory elements controlling the response of this organism to oxygen and light. The observed patterns of gene expression are evaluated and discussed in light of our knowledge of the physiology of R. sphaeroides under aerobic and photosynthetic growth conditions. Finally, this analysis has enabled to us go beyond the traditional patterns of gene expression associated with the photosynthesis lifestyle and to consider, for the first time, the full complement of genes responding to oxygen, and variations in light intensity when growing photosynthetically. The data provided here should be considered as a first step in enabling one to model electron flow in R. sphaeroides 2.4.1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular genetic analysis suggesting interactions between AppA and PpsR in regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1.

The AppA protein plays an essential regulatory role in development of the photosynthetic apparatus in the anoxygenic phototrophic bacterium Rhodobacter sphaeroides 2.4.1 (M. Gomelsky and S. Kaplan, J. Bacteriol. 177:4609-4618, 1995). To gain additional insight into both the role and site of action of AppA in the regulatory network governing photosynthesis gene expression, we investigated the re...

متن کامل

Redox-dependent gene regulation in Rhodobacter sphaeroides 2.4.1(T): effects on dimethyl sulfoxide reductase (dor) gene expression.

The ability of Rhodobacter sphaeroides 2.4.1(T) to respire anaerobically with the alternative electron acceptor dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO) is manifested by the molybdoenzyme DMSO reductase, which is encoded by genes of the dor locus. Previously, we have demonstrated that dor expression is regulated in response to lowered oxygen tensions and the presence of DMSO o...

متن کامل

Responses of the Rhodobacter sphaeroides transcriptome to blue light under semiaerobic conditions.

Exposure to blue light of the facultative phototrophic proteobacterium Rhodobacter sphaeroides grown semiaerobically results in repression of the puc and puf operons involved in photosystem formation. To reveal the genome-wide effects of blue light on gene expression and the underlying photosensory mechanisms, transcriptome profiles of R. sphaeroides during blue-light irradiation (for 5 to 135 ...

متن کامل

Analysis of hemF gene function and expression in Rhodobacter sphaeroides 2.4.1.

The hemF gene of Rhodobacter sphaeroides 2.4.1 is predicted to code for an oxygen-dependent coproporphyrinogen III oxidase. We found that a HemF- mutant strain is unable to grow under aerobic conditions. We also determined that hemF expression is controlled by oxygen, which is mediated, at least in part, by the response regulatory protein PrrA.

متن کامل

AppA Is a Blue Light Photoreceptor that Antirepresses Photosynthesis Gene Expression in Rhodobacter sphaeroides

Photosynthetic bacteria regulate photosystem synthesis in response to alterations in oxygen tension and light intensity. In this study we show that the PpsR repressor from Rhodobacter sphaeroides binds to DNA in a redox-dependent manner through the formation/breakage of an intramolecular disulfide bond. We also demonstrate that PpsR is antagonized by the flavin-containing antirepressor, AppA, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 10  شماره 

صفحات  -

تاریخ انتشار 2004